Anhang I: Schnellreferenz

SI-Einheiten

The watt. This SI unit is named after James Watt. As for all SI units whose names are derived from the proper name of a person, the first letter of its symbol is uppercase (W). But when an SI unit is spelled out, it should always be written in lowercase (watt), with the exception of the "degree Celsius." 42

from wikipedia

SI steht für Système Internationale. SI-Einheiten sollten alle Ingeneure benutzen, damit sie keine Raumschiffe verlieren.

Energie	ein Joule	1 J
Leistung	ein Watt	1 W
Kraft	ein Newton	1 N
Länge	ein Meter	1 m
Zeit	eine Sekunde	1 s
Temperatur	ein Kelvin	1 K

Präfix	Kilo	Mega	Giga	Tera	Peta	Exa
Symbol	k	М	G	Т	Р	E
Faktor	10 ³	106	10 9	1012	1015	1018
Präfix	Zenti	Milli	Mikro	Nano	Pico	Femto
Symbol	С	m	μ	n	р	f
Faktor	10-2	10 -3	10-6	10-9	10-12	10-15

Tabelle I.1: SI-Einheiten und Präfixe

Meine bevorzugten Einheiten für Energie, Leistung und Transport-Effizienz

Energie	eine Kilowattstunde	1 kWh	3 600 000 J
•			
Leistung	eine Kilowattstunde pro Tag	1 kWh/d	$(1000/24)W \approx 40W$
Kraft	eine Kilowattstunde pro 100 km	1 kWh/100 km	36N
Zeit	eine Stunde	1 h	3600 s
	ein Tag	1 d	$24 \times 3600 \text{ s} \approx 10^5 \text{ s}$
	ein Jahr	1 y	$365,25 \times 24 \times 3600 \text{ s} \approx \pi \times 10^7 \text{ s}$
Kraft pro	Kilowattstunde pro Tonnen-km	1 kWh/t-km	$3.6 \text{m/s}^2 (\approx 0.37 \text{g})$
Masse			

 $^{^{\}rm 42}$ Diese Schreibweisen-Konvention gilt nur für englischsprachige Texte!

Weitere Einheiten und Symbole

	Maßeinheit	Symbol	Wert
Menschen	Person	р	
Masse	Tonne	t	1 t = 1000 kg
	Gigatonne	Gt	$1Gt = 10^9 \times 1000 \text{ kg} = 1 \text{ Pg}$
Transport	Personen-Kilometer	p-km	
Transport	Tonnen-Kilometer	t-km	
Volumen	Liter	1	$1 I = 0.001 m^3$
Fläche	Quadratkilometer	qkm, km ²	$1 \text{ qkm} = 10^6 \text{m}^2$
	Hektar	ha	$1 \text{ ha} = 10^4 \text{m}^2$
	Wales		1 Wales = 21000km^2
	London (Greater London)		1 London = 1580 km ²
Energie	Dinorwig		1 Dinorwig = 9 GWh

Milliarden, Millionen und die Präfixe anderer Autoren

In englischen Texten wird eine Milliarde häufig nach dem amerikanischen Standard als "a billion" (1 bn) benannt⁴³. Diese Einheit steht für 1000 Millionen oder 10^9 . Eine Billion steht dagegen für 1000 Milliarden oder 10^{12} . Eine (europäische) Billion wird nach amerikanischem Standard "a trillion" bezeichnet. Das Standard-Präfix für die Milliarde (10^9) ist "Giga-", für die Billion (10^{12}) "Tera-".

Million und Milliarde werden im kontinental-europäischen Raum mit Mio und Mrd abgekürzt.

Häufig wird im englischsprachigen Raum m als Abkürzung für die Million verwendet, doch ist das inkompatibel mit dem SI-Standard, wo m als Präfix für 1/1000stel gebraucht wird (etwa in mg). Bei Zitaten, in denen m für Million steht, ersetze ich dies durch M. Beispielsweise benutze ich Mtoe für Millionen Tonnen Öl-Äquivalent und MtCO $_2$ für Millionen Tonnen CO $_2$.

Nervige Einheiten

Es gibt eine ganze Reihe allgemein benutzter Einheiten, die aus verschiedensten Gründen nerven. Für einige von ihnen fand ich heraus, was sie bedeuten. Ich stelle dies hier zusammen, damit Sie die Pressemeldungen übersetzen können.

Haushalte

Die Einheit "Haushalte" wird üblicherweise benutzt, wenn die Leistung Erneuerbarer Energiequellen beschrieben werden soll. Beispiel: "Die Turbinen der 300 Mio ₤ teuren Whitelee Windfarm erzeugen 322 MW – genug um 200.000 Haushalte zu versorgen." Der Haushalt ist laut der British Wind Energy Assiciation definiert als 4.700 kWh pro Jahr [www.bwea.com/ukwed/operational.asp]. Das sind 0.54 kW oder 13 kWh pro Tag. (Wenige Organisationen benutzen auch 4000 kWh/y pro Haushalt.)

Die Einheit "Haushalte" nervt mich, weil ich befürchte, dass manche Leute sie mit der Gesamtleistung, die die Menschen eines Haushalts verbrauchen, durcheinanderbringen. Letztere ist aber etwa 24mal größer. Der "Haushalt" berücksichtigt lediglich den mittleren häuslichen Elektrizitätsbedarf eines Haushalts. Nicht die benötigte Heizenergie des

 $^{^{43}}$ Dies kann auch bei den nichtübersetzten Teilen (Bezeichnungen in den Originalgrafiken, Anmerkungen am Ende der Kapitel) dieser Übersetzung vorkommen. Im laufenden Text wird für 10^9 durchwegs der Begriff "Milliarde" verwendet, für 10^{12} der Begriff "Billion".

Haushalts. Nicht den Arbeitsplatz. Nicht den Transport. Nicht die energiefressenden öffentlichen Leistungen, die für die Haushaltsmitglieder erbracht werden.

Wenn wir über die CO₂-Emissionen eines "Haushalts" sprechen sollten, wäre hier der offizielle Umwandlungsfaktor bei 4 Tonnen CO₂ pro Haushalt pro Jahr.

Kraftwerke

Ideen zur Energie-Einsparung werden oftmals in eingesparten "Kraftwerken" formuliert. Etwa wäre nach einem BBC-Bericht durch neue unverwüstliche LEDs in Ampeln "die Energie-Einsparung riesig – der Betrieb der englischen Ampeln erfordert etwa zwei mittelgroße Kraftwerke". news.bbc.co.uk/1/low/sci/tech/specials/sh effield_99/449368.stm

Was ist ein mittelgroßes Kraftwerk? 10 MW? 50 MW? 100 MW? 500 MW? Ich habe keine Idee. Eine Suche mit Google ergab, dass manche Leute glauben, es wären 30 MW, manche 250 MW, manche 500 MW (die häufigste Wahl) und manche 800 MW. Was für eine sinnlose Einheit!

Wäre es nicht erhellender für den Artikel über die Ampeln, wenn man die Einsparung in einem Prozentsatz ausdrückte? "Der Betrieb der englischen Ampeln erfordert 11 MW Elektrizität, das sind 0,03 % des nationalen Verbrauchs." Das würde klarstellen, wie "riesig" die Einsparungen wären.

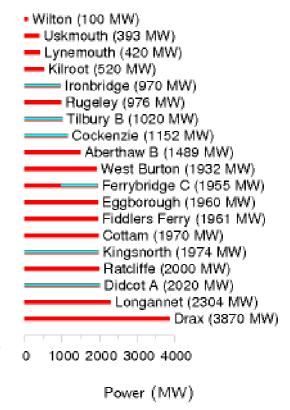


Fig.I.2: Leistungen britischer Kohlekraftwerke. In blau sind die 8 GW hervorgehoben, die 2015 stillgelegt werden. 2.500 MW über England verteilt ergeben 1 kWh/d pro Person.

Autos auf der Straße

Einige Ankündigungen beschreiben CO₂-Einsparungen als "Äquivalent an Autos, die von der Straße verschwinden". Richard Branson sagte beispielsweise, wenn die Voyager-Flotte der Virgin Trains auf 20% Biodiesel umstellte – übrigens, finden Sie es nicht auch übertrieben, einen Zug als "grünen Biodiesel-betriebenen Zug" zu bezeichnen, wenn er mit 80% fossilen und nur 20% grünem Treibstoff fährt? – Entschuldigung, ich schweife ab. Richard Branson sagte, wenn die Voyager-Flotte der Virgin Trains auf 20% Biodiesel umstellte – ich betone das "wenn", da Leute wie er immer Medieninteresse erhalten, wenn sie verkünden, dass sie mit dem Gedanken spielen, etwas Gutes tun zu wollen, doch viele dieser laut angekündigten Initiativen werden dann später still und leise wieder fallengelassen, so wie die Idee, Flugzeuge auf den Flughäfen mit Schleppfahrzeugen zu bewegen um sie grüner zu machen – Entschuldigung, ich schweife schon wieder ab. Richard Branson sagte, wenn die Voyager-Flotte der Virgin Trains auf 20% Biodiesel umstellte, wäre dies eine Reduktion der CO₂-Belastung von 34.500 Tonnen pro Jahr, was äquivalent sei zu "23.000 Autos, die von der Straße verschwänden." Diese Äußerung gibt uns einen Hinweis auf den Umrechnungsfaktor:

"ein Auto von der Straße verschwunden" \leftrightarrow -1,5 t CO₂ pro Jahr.

Kalorien

Kalorien nerven, weil in der Diät-Community eine Kilokalorie (kcal) auch "Kalorie" heißt. Eine solche Lebensmittel-"Kalorie" (in Anführungsstrichen) entspricht also 1000 (physikalischen) Kalorien (1000 cal = 1 kcal).

2.500 kcal = 3 kWh = 10.000 kJ = 10 MJ.

Barrel

Eine nervige Einheit, die von der Öl-Community geliebt wird, ist das Barrel, und auch die Tonne Rohöl. Warum können sie nicht bei einer Einheit bleiben? Ein Barrel Öl ist 6,1 GJ oder 1,700 kWh.

Barrels sind doppelt nervig, weil es verschiedene Definitionen gibt und jede ein anderes Volumen bezeichnet.

Hier ist alles zusammengefasst, was man über Barrels wissen muss: Ein Barrel ist 42 US-Gallonen oder 159 Liter. Ein Barrel Öl ist 0,1364 Tonnen Öl. Ein Barrel Rohöl hat eine Energie von 5,75 GJ. Ein Barrel Öl wiegt 136 kg. Eine Tonne Rohöl ist 7,33 Barrels und 42,1 GJ. Die Kohlenstoff-Verschmutzungsrate von Rohöl ist 400 kg CO_2 pro Barrel. www.chemlink.com.au/conversions.htm

Das bedeutet, dass bei einem Ölpreis von 100 \$ pro Barrel die Energiekosten bei 6 US-Cent pro kWh liegen. Wäre die CO₂-Abgabe bei 250\$ pro Tonne CO₂, würde diese Steuer den Barrel-Preis um 100\$ erhöhen.

Gallonen

Die Gallone wäre eine nette menschenfreundliche Einheit, hätten die Yankees sie nicht mit einer Definition verdorben, die im Widerspruch zu der aller anderen Menschen steht, ähnlich wie ihre Definition des Pint oder des Quart. Die US-Volumenmaße sind alle etwa 5/6 der korrekten Maße.

- 1 US gal = 3,785 I = 0,83 imperial gal,
- 1 imperial gal = 4.545 I.

Tonnen

Tonnen sind im englischsprachigen Raum nervig, weil es die "short ton", "long ton" und die "metric ton" gibt. Diese Definitionen liegen nahe genug beieinander, so dass ich sie hier nicht unterscheiden brauchte. 1 short ton (2.000 lb) = 907 kg, 1 long ton (2.240 lb) = 1.016 kg, 1 metric ton (1 Tonne) = 1.000 kg.

BTU und "Quad"

British Termal Units (BTU) sind nervig, weil sie weder Teil des Système Internationale sind, noch eine praktische Größe haben. Wie das unpraktische Joule sind auch sie zu klein, so dass man unsinnige Präfixe wie⁴⁴ "quadrillion" (10¹⁵) verwenden muss, um sie in der Praxis anwenden zu können.

1 kJ = 0,947 BTU, 1 kWh = 3.409 BTU. Ein "Quad" ist 1 Billiarde BTU = 293 TWh.

⁴⁴ Es ist hier wiederum die amerikanische Bezeichnung gemeint. Die amerikanische "quadrillion" entspricht der europäischen Billiarde, vgl. dazu auch die Fußnote auf Seite 346

Witzige Einheiten

Tassen Tee

Kann man so Solar-Module in ein gutes Licht rücken? "Wenn alle 7.000 PV-Module⁴⁵ angebracht sind, werden sie jedes Jahr 180.000 Einheiten Ökostrom liefern – genug, um 9 Millionen Tassen Tee zu kochen." Diese Ankündigung setzt ein 1kW mit 50 Tassen Tee gleich.

Als Volumeneinheit gibt es offiziell eine Tasse: 1 US cup (ein halber US-Pint) mit 0,24 l; doch eine Tasse Tee oder Kaffee hat üblicherweise 0,18 l. Um 50 Tassen Wasser mit je 0,18 l von 15 °C auf 100 °C zu erwärmen benötigt man 1 kWh.

Also ist "Neun Millionen Tassen Tee pro Jahr" eine andere Formulierung für "20 kW".

Doppeldeckerbusse, Albert-Halls, Wembley-Stadien

"Wenn in England jeder, bei dem es möglich ist, Hohlwandisolierung installieren würde, könnten wir damit gigantische 7 Millionen Tonnen Kohlendioxid-Emissionen verhindern. Das ist genug Kohlendioxid, um 40 Millionen Doppeldeckerbusse zu füllen oder das neue Wembley-Stadion 900 mal!" Woraus wir die hilfreiche Tatsache lernen können, dass ein Wembley 44.000 Doppeldeckerbusse ist. Tatsächlich hat der Kessel des Wembley-Stadions ein Volumen von 1.140.000 m³.

"Wenn jeder Haushalt nur eine Energiesparlampe installiert, wäre genug CO_2 eingespart, um die Royal Albert Hall 1.980 mal zu füllen!" (Eine Albert Hall ist 100.000 m³.)

Die Mengen von CO_2 in Volumen statt in Masse auszudrücken ist eine zuverlässige Möglichkeit, sie groß erscheinen zu lassen. Sollte "1 kg CO_2 pro Tag" nach zu wenig klingen, sagen Sie einfach "200.000 Liter CO_2 pro Jahr"!

Masse von $CO_2 \leftrightarrow Volumen$	Hektar	$= 10^4 \text{m}^2$
$2 \text{ kg CO}_2 \leftrightarrow 1 \text{m}^3$	Acre	$= 4050 \text{ m}^2$
$1 \text{ kg CO}_2 \leftrightarrow 500 \text{ Liter}$	Square Mile	$= 2,6 \text{ km}^2$
$44 \text{ g CO}_2 \leftrightarrow 22 \text{ Liter}$	Square Foot	$= 0.093 \text{ m}^2$
$2 g CO_2 \leftrightarrow 1 Liter$	Square Yard	$= 0.84 \text{ m}^2$

Tabelle I.3: Volumen-zu-Masse-Umrechnung

Tabelle I.5: Flächen

Noch mehr Volumen

Ein Container ist 2,4 m breit und 2,6 m hoch und (6,1 oder 12,2) Meter lang (entsprechend dem 20-Fuß-Containermaß TEU bzw. dem 40-Fuß-Containermaß FEU). Ein TEU ist die Größe eines kleinen 20-Fuß-Containers – ein Innenvolumen von etwa 33 m³. Die meisten gängigen Container, die man sieht, sind 40 Fuß mit dem Volumen von 2 TEU. Ein 40-Fuß-Container wiegt 4 Tonnen und kann 26 Tonnen Fracht tragen, sein Volumen ist 67,5 m³.

Ein Schwimmbecken hat ein Volumen von etwa 3000 m³.

Ein Doppeldeckerbus hat das Volumen von 100 m³. Ein Heißluftballon ist 2500 m³. Fig.I.4: Ein 20-Fuß-Container (1 TEU)

Die große Pyramide von Gizeh hat ein Volumen von 2.500.000 Kubikmetern.

⁴⁵ Das wären dann sehr kleine Module mit ca. 25 Wp pro Modul

Flächen

Die Erdoberfläche ist 500 x 10⁶ km², die Landfläche ist 150 x 10⁶ km². Mein typisches englisches Haus mit drei Schlafzimmern hat eine Wohnfläche von 88 m². In den USA ist die mittlere Größe eines Einfamilienhauses 2330 square-feet (216 m²).

Leistung

Schreiben wir das Suffix (el) oder (e) hinter eine Leistungsabgabe, bedeutet das, dass wir explizit über elektrische Leistung sprechen. Der Output eines Kraftwerks könnte z.B. 1 GW(el) sein, während es chemische Leistung mit einer Rate von 2,56 GW verbraucht. In gleicher Weise bezeichnet das Suffix (th) bei einer Leistungsgröße, dass es sich um thermische Leistung handelt. Dasselbe gilt für Suffixe an Energiegrößen. "Mein Haus verbraucht 2kWh(el) Strom pro Tag."

Stellen wir das Suffix p oder (peak) hinter eine Leistungsangabe, bedeutet das die Peak-(Spitzen)-Leistung oder Kapazität. 10 m² PV-Module könnten z.B. eine Leistung von 1 kWp haben.

```
1 kWh/d = \frac{1}{24} kW.
```

1 toe/y = 1,33 kW.

Öl kommt aus einer Förderpumpe mit etwa einem halben Liter pro Sekunde. Das sind 5 kWh pro Sekunde oder 18 MW.

Die Leistung eines Formel-1-Rennwagens ist 560 kW.

Der englische Stromverbrauch ist 17 kWh pro Tag pro Person, oder 42,5 GW englandweit.

"Eine Tonne" Raum-Klimatisierung ist 3,5 kW.

Welt-Energieverbrauch

Der weltweite Energieverbrauch entspricht einer Leistung von 15 TW, der Stromverbrauch von 2 TW.

Nützliche Umwandlungsfaktoren

Um TWh pro Jahr in GW zu wandeln, teile durch 9.

1 kWh/d pro Person ist das gleiche wie 2,5 GW englandweit, oder 22 TWh/y englandweit.

Um mpg (Meilen pro britischer Gallone) in km pro Liter zu wandeln, teile durch 3.

Bei Zimmertemperatur ist $1kT = \frac{1}{40}$ eV.

Bei Zimmertemperatur ist 1kT pro Molekül = 2,5 kJ/mol.

Zählerablesung

Wie man die Gas-Zählerwerte in Kilowattstunden wandelt:

Wenn Ihr Gaszähler in Kubik-Fuß geeicht ist, nehmen Sie die Hunderter und multiplizieren Sie sie mit 32,32, um kWh zu erhalten.

Wenn Ihr Gaszähler in Kubikmeter geeicht ist, multiplizieren Sie die Anzeige mit 11,42, um kWh zu erhalten.

Brennwerte von Treibstoffen

Rohöl: 37 MJ/I; 10,3 kWh/I.

Erdgas: 38 MJ/m³. (Methan hat eine Dichte von 1,819 kg/m³.)

1 Tonne Kohle: 29,3 GJ; 8000 kWh.

Fusionsenergie gewöhnlichen Wassers: 1800 kWh pro Liter. Siehe auch Tabelle 26.14 Seite 218 und Tabelle D.3 Seite 304.

Wärmekapazitäten

Die Wärmekapazität von Luft ist 1 kJ/kg/°C oder 29 J/mol/°C. Die Dichte von Luft ist 1,2 kg/m³. Die Wärmekapazität pro Volumeneinheit ist also 1.2 kJ/m³/°C.

Die latente Wärme beim Verdunsten von Wasser: 2257,92 kJ/kg. Wärmekapazität von Wasserdampf: 1,87 kJ/kg/°C. Die Wärmekapazität von Wasser ist 4,2 kJ/l/°C. Die Dichte von Dampf ist 0,590 kg/m³.

Druck

Atmosphärischer Druck: 1 bar $\approx 10^5$ Pa (Pascal). Druck in 1000 m Wassertiefe: 100 bar. In 3000 m Wassertiefe: 300 bar.

Geld

Ich habe die folgenden Umrechnungskurse den Diskussionen über Geld zu Grunde gelegt: $1 \in 1,26 \,$, $1 \neq 1,85 \,$, $1 \neq 1,12 \,$ kanadische $1,12 \,$ bies waren die korrekten Wechselkurse Mitte 2006.

Treibhausgas-Umrechnungsfaktoren

Frankreich	83
Schweden	87
Kanada	220
Österreich	250
Belgien	335
Europ. Union	353
Finnland	399
Spanien	408
Japan	483
Portugal	525
Großbritannien	580
Luxemburg	590
Detuschland	601
USA	613
Niederlande	652
Italien	667
Irland	784
Griechenland	864
Dänemark	881

Fig.I.9: Kohlenstoffintensität der Stromproduktion (g CO₂ pro kWh Elektrizität)

Fig.I.10: Emissionen bei der Treibstoffverbrennung. Quelle: DEFRA's Environmental Reporting Guidelines for Company Reporting on Greenhouse Gas Emissions.

Fig.I.11: Treibhausgas-Emissionen pro Kopf vs. BSP pro Kopf, in Kaufkraftäquivalent US-\$. Quadrate bezeichnen Länder mit "hohem Entwicklungsniveau", Kreise "mittleres" oder "niedriges". Vergleiche auch Fig.30.1 (Seite 250) und Fig.18.4 (Seite 121). Quelle: UNDP Human Development Report, 2007. [3av4s9]

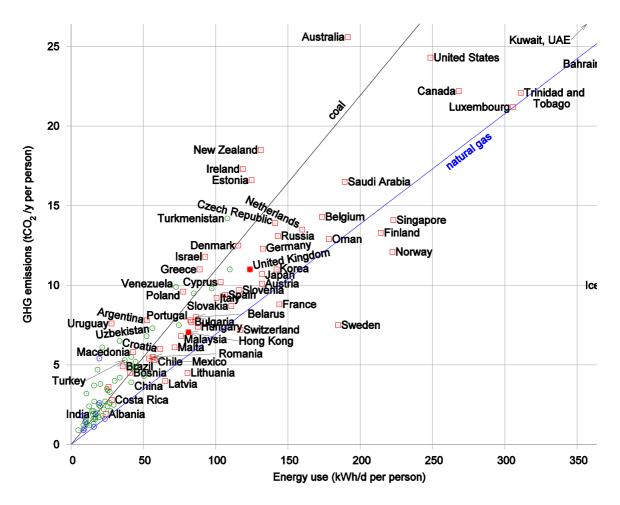


Fig.I.12: Treibhausgas-Emissionen pro Kopf vs. Energieverbrauch pro Kopf. Die Linien zeigen die Emissions-Intensitäten von Kohle und Erdgas. Quadrate bezeichnen Länder mit "hohem Entwicklungsniveau", Kreise "mittleres" oder "niedriges". Vergleiche auch Fig.30.1 (Seite 250) und Fig.18.4 (Seite 121). Quelle: UNDP Human Development Report, 2007.